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Abstract-Effects of spatially varying absorption and scattering coefficients in radiation transfer in absorb- 
ing, emitting anisotropically scattering hollow and solid cylinders having reflecting boundaries are inves- 
tigated. S, and S6 discrete-ordinate methods have been used to solve the problem. Tabulated results are 
presented for the incident radiation, net radiation heat flux, the hemispherical reflectivity and transmissivity. 

and the exit intensity. 

I. INTRODUCTION and diffuse reflection at both boundaries 

THERE are numerous engineering applications of radi- 
ative transfer in absorbing, emitting and aniso- 
tropically scattering media with variable radiation 
properties. Examples include, among others, coal- 
fired combustion systems, light weight fibrous insu- 
lations, and heat transfer systems containing small 
scattering particles. Some works are availabI~o~adi- 
ation transfer in participating axisymmeWica1 enclos- 
ures; but they all consider constant radiation prop- 
erties [l-5]. Some works are also available for the case 
of spatially varying albedos; but they are for a plane- 
parallel or sphe~~lly symmet~c medium [6-U]. No 
work appears to be available on the solution of radi- 
ation transfer in cylindrical symmetry allowing for the 
spatial variation of radiation properties. 

In the present study, the discrete-ordinate method 
13-5, 13-173 is used to solve one-dimensionai radi- 
ation transfer in cylindrically symmetric non-homo- 
geneous hollow and solid cylinders ; the accuracy and 
efficiency of S4 and S6 schemes are examined, and 
forward and backward scattering cases are con- 
sidered. 
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at r=az, ~-CO (14 

where the coef7icients c, a, and a2 are defined as fol- 
lows : 

hollow cylinder: c = 0, a, = inner radius. 
a2 = outer radius : 

solid cylinder : c = 1, at = 0, a2 = radius. 

Here I(r,Q) is the radiation inter&y: r the space 
variable in the radial direction ; p, q and 5 the direction 
cosines of the unit vector a, i.e. 

p = sin 0 cos # 

q = sin 6 sin d, 

5 = cos 8 (14 
2. FORMULATION OF THE PROBLEM 

where B and Cp are the polar and azimuthal angles, 
The mathematical fo~ulation of the problem respectively. Clearly the mathematical fo~u~ation 

includes a sufficiently general conservative form of the given above will include the problems of hollow and 
equation of radiative transfer for a solid or hollow solid cylinders if the coefficients c, a, and a2 are selec- 
cylinder given by [ 181 ted as stated above. In addition, K(T), c(r) and p(r) 

F k N(r, WI - t $ W(r, W +B(rV(r, Q) 

are the space-dependent absorption, scattering and 
extinction coefficients, respectively, which are related 
by 

= h.(r)&(T) + $ 
I 

p@‘, Q)Z(r, Cl’) dR’, B(r) = K(r)+g(r). (2) 
WE4X 

The blackbody radiation intensity I,(F) is related to 
in a, -et < a2 (la) the temperature T(r) in the medium by 

subjected to externally incident radiation, emission I,(T) = n*(?T’(r)/x (3) 
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NOMENCLATURE 

positions at boundaries 
area defined by equation (10~) 
thickness, az - N, 
coefficient in equation (I b) 
expansion coefficients defined by 
equation (4) 
externally incident radiation at 
boundaries 
incident radiation 
radiation intensity 
order of anisotropic scattering in 
equation (4) 
total number of discrete ordinates 
anisotropic scattering phase 
function defined by equation (4) 
Legendre polynomials 
net radiation heat flux 
space variable in the radial direction 
source function defined by equation 

(lob) 
temperature in the medium 
control volume defined by equation 

(JOc) 
weight in equation (Sa) 
rib. 

1’ 

P 

44 

L 
R 

Subscripts 
I 

2 

b 
i 
111 

coefficient defined by equation ( I2b) 
emissivities at the boundaries 
absorption coefficient 
direction cosines defined by 
equation (Id) 
jjjj’ + rj?J’ + 55’ 
reflectivities at the boundaries 
scattering coefficient 
Stefan-Boltzmann constant 
solid angle 
unit vector in the direction of 
propagation. 

position at the inner radius for the 
hollow cylinder or at the center of 
the solid cylinder 
position at the outer radius for the 
hollow cylinder or at the radius 
for the solid cylinder 
blackbody 
mesh points in the space coordinate 
directions used in discrete-ordinate 
equations. 

Superscripts 
Greek symbols 0 position at the cell center 

constants defined by equation (9) + positive p-directions 
extinction coefficient - negative jj-directions. 

where n is the refractive index and d the Stefan-Boltz- 
mann constant. The anisotropic scattering phase func- 
tion p(Q, Cl’) is defined by 

p(R,Q’) = i d,P,(v), do = 1 
I=0 

(4) 

where v = Q-n = pp’+r~rj+<<‘, d, are the expan- 
sion coefficients, P,(v) the Legendre polynomials and 
L the order of anisotropic scattering. Clearly, L = 0 
corresponds to isotropic scattering. In the boundary 
conditions given by equations (lb) and (Ic), f(p) is 
the externally incident radiation, E and p the diffuse 
emissivity and reflectivity of the surface. respectively, 
and subscripts 1 and 2 refer to the boundaries at r = u, 
and u*, respectively. The geometries and coordinates 
for the hollow cylinder and solid cylinder are shown 
in Fig. 1. 

The discrete-ordinate representation of equation 
(la) for a finite number of discrete ordinates can be 
written by [5] 

= k.(r)h, + $Jz wm.pnrm~fm. (5a) 
“3 

where I,, = I(r, Q), subscripts m and tn’ represent the 
discrete directions, II’, the weight. and pmm. is given by 

Pmni = i d,(~qmm 1 (5b) 
I=0 

and 

“#W?l~ = II”,j(“,, fWJm~ + s,c, W 

The discrete-ordinate representation of the boundar) 
conditions. equations (1 b) and (1~). is given by 

p,,, > 0, pm. < 0. r = a, (6a) 

p,<O, p,,,,>O. r=u2. (6b) 

If equation (Sa) is integrated over all angles, the 
second term on the left-hand side vanishes. By direct 
differencing, we define the discrete form of the term 
S(ql,);‘Sr#~ for a particular value of <, as [3] 
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(a) 

(W 
FIG. I. Top views of the geometries and coordinate for the 

hollow (a) and solid cylinders (b). 

where I “,+, 2 and I,,_ ,iz are the intensities in the direc- 
tions of m-t l/2 and m-1/2, respectively, and the 
constants z~,+ ,12 and x,,,_ ,,I are yet to be determined. 
Equation (7) is now introduced into equation (5a) 

This equation has no angular derivative but includes 
unknown constants CL,+ ,i2 and z,,,_ ,;Z. These con- 
stants can be determined by considering the case of 
the conservative medium, i.e. a/P = I. For such a case, 
I m+ 112 = L- 1:2 = I,,, = constant, and equation (8) 
reduces to 

%+ I!? -%I- I, 2 = P,rI’,. (9) 

This expression provides a recursion relation for 
determining the constants r,,, ,,Z and z,,_ , 2 for each 
particular value of <,. 

3. METHOD OF SOLUTION 

The discrete-ordinate equation (7) can be solved as 
now described. Equation (8) is multiplied by 2nr dr 
and integrated over the cell from r = ri to r,, , to 

obtain 

~,~(A,,,I,,-,-A,f,,,)-(A,,,-A,) 

where 

(lob) 

A, = 2nr,, V” = 7t(r:+, -rf) (1W 

and the quantities with a superscript 0 denote the 
values at the node centre, i.e. i+ l/2. 

The intensity at the cell centre fz is related to the 
intensities I,,,, and I,,,;, , at the cell boundaries i and 
i+l by 

Cl = W”,.i + L.i+ I) (1 la) 

and the intensity 1: is also related to the intensities 
I$-, 2 and Ii,, 2 at the angular edges m-112 and 
m+ l/2 by 

II = ;(I:_, >+I:,+, 2). (1 lb) 

The computation of equations (IOa) and (lob) is per- 
formed from r = a2 to o, (i.e. inwards) for p,,, < 0 
and from r = a, to u2 (i.e. outwards) for p,,, > 0 as 
described below. 

(I) I!,,, < 0 (inward calculations) : eliminating I,,,j 

and IiI+i ? from equations (IOa) and (lob) by utilizing 
the expressions given by equations (1 I a) and (11 b) we 
obtain 

A = Ai+Ai+, (12b) 

.,’ = -h-,i2+rm+ I Wi, I -.4)/“;,. ,lVl WC) 

(2) p,, > 0 (outward calculations) : eliminating 

I+, and II, 1.~ from equations (10a) and (lob) by 
using the expressions given by equations (1 la) and 
(I lb), we find 

where the quantities A and 7: have been defined in 
equations (l2b) and (12~). 

Note that the calculations of equations (12) and (13) 
require an initial estimate of the intensity I:_ 1,2 for 
each particular value of &,,. This can be found by 
solving equations (12) in the direction of q,,, = 0 and 
setting p(m = (1 - &Q ‘.42, where the azimuthally angu- 
lar derivative vanishes [ 191. The solution of equations 
(I 2) and (I 3) must be obtained iteratively due to the 
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unknown terms for the reflection in the boundaries 
and in-scattering in the medium. Therefore, reflection 
terms in equations (6a) and (6b) and in-scatte~ng 
term in equation (lob) are set equal to zero, thus both 
terms are regarded known in the first calculation and 
updated in the following iterations. The procedure is 
continued until the convergence criterion [If’+ ‘I- 
P’/ < IO- ’ is achieved, where superscript (i) refers to 
the iteration level. 

The accuracy of the discrete-ordinate solutions 
depends on the choice of the quadrature scheme. 
Recently, Fiveland [14] showed that Gaussian quad- 
ratures used in the cafculation results in the inaccurate 
solutions because these quadrature points do not 
satisfy the first moment for half range. In this work, 
the moment-matching technique proposed by Carlson 
and Lathrop [l9], is applied to calculate the quad- 
rature points and weights. The quadrature scheme 
should satisfy ihe zeroth and second moments for full 
range (i.e. 4n); and the first moment for half range 
(i.e. 2n). The total number of the discrete ordinates 
M is identical to N(N+2)/4 when .S,v schemes are 
used for one-dimensional cylindrical geometry. The 
quadrature points and weights for S, and S, schemes 
are listed in Table 1. 

Finally, the incident radiation Gj, the net radiation 
heat flux y, and the forward and backward radiation 
fluxes y: and q; anywhere in the medium are deter- 
mined from 

Table 1. Quadrature points and weights for .T4 and S, 
schemes 

I -0.295876 
2 0.295876 
3 -0.908248 
4 - 0.295876 
5 0.295876 
6 0.908248 

I -0.224556 
2 0.224556 
3 -0.689048 
4 -0.224556 
5 0.224556 
6 0.689048 0.224556 
7 -0.948235 0.224556 
8 -0.689048 
9 -0.224556 

10 0.224556 
II 0.689048 
12 0.948235 

S, 
0.295876 
0.295876 
0.295876 
0.908248 
0.908248 
0.295876 

-0.908248 2x13 
-0.908248 2n/3 
- 0.295876 2~13 
- 0.295876 2x/3 
-0.295876 2n/3 
-0.295876 2~/3 

& 
0.224556 
0.224556 
0.224556 
0.689048 
0.689048 

0.689048 
0.948235 
0.948235 

-0.948235 
-0.948235 
- 0.689048 
- 0.689~8 
-0.689048 
-0.689048 
-0.224556 
-0.224556 
-0.224556 
-0.224556 

0.689048 -0.224556 x/3 
0.224556 -0.224556 xl3 

RI3 
nl3 
s/3 
n/3 
xj3 
nl3 
nl3 
r/3 
x/3 
n/3 

q: = c bll~71nLn.i (1W 
P,>O 

4. RESULTS AND DISCUSSION 

In this work, we solved the radiation problem with 
spatially varying radiation properties for the hollow 
and solid cylinders. For the purpose of comparison 
with available data in the literature, the extinction 
coefficient is chosen as unity, i.e. /I(r) = 1, and the 
scattering coefficient b(r) is varied for all the cases. 
To show the effects of the anisotropic scattering. two 
different scattering laws [20], one representing for- 
ward scattering and the other backward scattering, 
are considered and the corresponding coefficients dt 
of equation (4) are fisted in Table 2. For simplicity, 
we assume that the boundaries are transparent (i.e. 
p, = p2 = 0), no external irradiation at I = a, (i.e. 
f‘l (ill) = 0). and negligible emission of radiation from 
the medium and the boundaries (i.e. I,, = f,,, = 
lb.? = 0). It is to be noted that the inclusion in the an- 
alysis of any one of the quantities just mentioned 
does not pose any computational difficulty. The 
units for CI, and ctZ and h should be in consistent 
units, i.e. in meters (m), if the radiation properties 
ti(~), a(r) and /I(r) are in m- I. Both SA and S, schemes 
are used to obtain the results given in Tables 3 and 4 
while only the Sh scheme is chosen to obtain the results 
in Tables 6-9. 

Tables 3 and 4 show the incident radiation and the 
net radiation heat flux, respectively, for an iso- 
tropically scattering, solid cylinder obtained by the SJ 
and Se schemes compared with those obtained by the 
F.v method [Z I ] that can be considered ‘exact’. The 
results of the S, scheme are in good agreement with 
the exact solutions and more accurate than those of 
the S, scheme in general. However, the S, scheme is 

Table 1. A forward (refractive index = 1.2, 
size parameter? = 2) and a backward 
(refractive index = ;o, size parameter = 1) 

scattering law used in the calculations 

Forward Backward 
t scattering scattering 

0 I.0 1.0 
I I .98398 -0.56524 
2 1.50823 0.29783 
3 0.70075 0.08571 
4 0.23489 O.Oi~3 
5 0.05133 0.00063 
6 0.00760 0.00000 
7 0.00048 
8 0.00000 

f Size parameter is defined by ED/~. 
where D is the diameter of the scattering 
particle and i. the *.vavelength of the inci- 
dent radiation. 
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Table 3. Incident radiations G of the solid cylinder at Table 4. Net radiation heat fluxes of the solid cylinder at 
.r = r/b = 0.5 and I with a transparent boundary and x = r/b = 0.5 and I with a transparent boundary and 

f:(p) = 1 f&d = 1 

u(r) b Exact” 44 b S, Exact” 

(a) G(.r = 0.5)/4x. I = r/b 

I 0.620040 0.630505 0.636839 
0.7 5 0.091478 0.092803 t 

10 0.010558 0.010720 0.010452 
1 0.710137 0.721582 0.727408 

0.8 5 0.147595 0. I50245 t 
IO 0.022849 0.023542 0.023259 
I 0.82655 I 0.83954 I 0.844174 

0.9 5 0.288350 0.2940 I5 t 
10 0.070782 0.073396 0.073336 

(b) G(x = 1)/4x. I = r/b 
I 0.815985 0.816584 0.819473 

0.7 5 0.679323 0.680391 t 
IO 0.661876 0.662740 0.66333 I 
I 0.86455 I 0.864265 0.866527 

0.8 5 0.728325 0.729167 t 
IO 0.708407 0.709251 0.709789 
I 0.92508 I 0.92365 I 0.924929 

0.9 5 0.804852 0.805184 t 
10 0.780121 0.780808 0.781243 

I 
0.7 5 

IO 
I 

0.8 5 
IO 

I 
0.9 5 

IO 

I 
0.7 5 

IO 
I 

0.8 5 
IO 
I 

0.9 5 
IO 

(a) --(/(.Y = 0.5). .r = r/b 
0.538040 0.573512 0.580910 
0.278374 0.296689 t 
0.040422 0.042486 0.041055 
0.411955 0.441731 0.446820 
0.322294 0.348391 t 
0.065848 0.070595 0.069274 
0.240567 0.259596 0.262105 
0.351241 0.384240 t 
0.126141 0. I37024 0.136417 

(b) -q(.r = I), I = r/b 
I.271 199 I .289640 1.298940 
2.166435 2.182758 t 
2.247395 2.262108 2.276860 

0.944730 0.959169 0.964758 
I.859101 1.875275 t 
I .963641 I .978000 1.990130 

0.534440 0.543147 0.545307 
I .35923 I I .374945 t 
1.509325 I .522666 I .530480 

tNo exact data are available in the literature. tNo exact data are available in the literature. 

more efficient than the Ss scheme. The number of 
control volumes V” in the r-direction (# C.f) &d 
the CPU time (in seconds (s)) consumed by an IBM 
3081 system for the S4 and S6 schemes for the cal- 

culations of Tables 3 and 4 are listed in Table 5. 
Experience shows the number of control volumes 
should be increased with increasing the radius of the 
cylinder for the sake of accuracy. As expected, the 
CPU time increases with increasing the values of the 
radius 6. For the non-scattering case, i.e. C(T) = 0, the 
CPU time consumed by the S, and Se schemes are 
not much different. However, the Ss scheme consumes 

Table 5. Number of control volumes and CPU times for the 
S, and S, schemes 

S,(M = 6) S,(M = 12) 

b o(r) # C.V. CPU (s) # C.V. CPU (s) 

1 0.0 7 1.8 15 1.9 
0.7 7 2.0 15 3.4 

5 0.0 35 1.9 75 2.5 
0.7 35 3.9 75 15.5 

10 0.0 70 2.0 I50 3.3 
0.7 70 5.7 I50 28.3 

Table 6. Effects of spatial variation of scattering coefficient, a(r), on hemispherical reflectivity and transmissivity of a hollow 
cylinder with a, = I, b = 1, transport boundaries andf&) = 1. {F, = (a:-a:)/(ai-ai) and F2 = (u:-a:)/($-a;)) 

u(r) 

Forward scattering 

Reflectivity Transmissivity 

Isotropic scattering Backward scattering 

Reflectivity Transmissivity Reflectivity Transmissivity 

3r/4F, 0.100764 0.312083 
0.2 + 9r/20F, 0.125505 0.361238 
0.4+ 3r/20F, 0.157142 0.420879 
0.5 0.176410 0.455613 
0.6- 3r/20F, 0.198620 0.494317 
0.8-9r/20F, 0.25463 I 0.586500 
1 - 3r/4F, 0.333034 0.705251 

3r/8F,+r2/2F2 0.088410 0.297486 
0.4 -9r/40F, + r2/2F2 0.138560 0.399541 
0.6-21r/40F,+r1/2Fz 0.175060 0.467952 
I -9r/8F, +r2J2F2 0.291482 0.662127 

Linear variation of a(r) 
0.128576 0.291873 
0.165666 0.320213 
0.20948 1 0.355777 
0.234630 0.377147 
0.262474 0.40 1566 
0.328558 0.462450 
0.414412 0.546873 

Quadratic variation of u(r) 
0.109272 0.283555 
0. I84028 0.342846 
0.232375 0.3848 19 
0.368150 0.515399 

0.136387 0.286632 
0.176618 0.309965 
0.223219 0.339966 
0.249598 0.358313 
0.278544 0.379533 
0.346391 0.433469 
0.433349 0.510330 

0.115212 0.279892 
0.196183 0.328994 
0.247060 0.364990 
0.386192 0.481535 



2656 J. R. Tsar and M. N. (ZZISIK 

Table 7. Effects of spatial variation of scattering coefficient, 
U(X). on hemispherical reHectivity of a solid cylinder with 

a, = I. transparent boundary and/,(p) = I 

a(.r), .Y = r:b 
Forward isotropic Backward 
scattering scattering scattering 

3.r. 4 
0.2 +9x/20 
0.4+3.r/20 
0.5 
0.6 -3x/20 
0.8 -9.ri20 
I - 3X/4 

3.r/8+.~‘jZ 
0.4-9.r/40+xz/2 
0.6-2l.u/40+x’/2 
I - 9.ri8 + .r’,‘Z 

Linear variation of a(.~) 
0.445810 0.468708 0.475870 
0.432647 0.452524 0.458903 
0.421450 0.438191 0.443747 
0.416603 0.43 1747 0.436880 
0.412265 0.425805 0.430509 
0.405181 0.415520 0.419352 
0.400336 0.407567 0.410530 

Quadratic variation of U(X) 
0.458570 0.484055 0.491929 
0.43 I 130 0.450650 0.456960 
0.420409 0.436768 0.442239 
0.405276 0.415245 0.41897 I 

much more computation time that the S4 scheme for 
Q(T) = 0.7. 

Table 6 lists the hemispherical reflectivity q+(02)/n 
and transmissivity q-(a,)/n for the hollow cylinder 
while Table 7 shows the hemispherical reflectivity 
q’(n?)/n for the solid cylinder subjected to an iso- 
tropic incidence of unit strength at r = a?. The values 
of the thickness b( =~~-a,) are considered I in both 
tables in the case of a, = 1 and 0 for Tables 6 and 7, 
respectively. To illustrate the effects of the spatial 
variation of the scattering coefficient on the hemi- 
spherical reflectivity and transmissivity. we have 

Table 8. Exit distribution of radiation intensity I; at r = o, 
and I,’ at r = a, ofa hollow cylinder with transparent bound- 

aries andf,(p) = I 

u(r), F, = (ai -a:)/(af -ai) 

b I; M 3r/4F, 0.5 I - 3r/4F, 

(a) Forward scattering 
I 0.0380 0.1668 
3 0.2866 0.43 I4 

I,@,) 4 0.1890 0.3259 
7 0.4048 0.5503 
8 0.3572 0.5035 
9 0.2577 
2 0.1352 
5 0.3399 

G(a2) 6 0.0211 
IO 0.5301 
I1 0.0879 
I2 0.0172 

I 0.0004 
3 0.0196 

0.4039 
0.2430 
0.4341 
0.0837 
0.6067 
0.1998 
0.0607 

0.0333 
0.0892 

Ii 4 0.0120 0.0669 
7 0.0546 0.1501 
8 0.0457 0.1325 
9 0.0313 0.1030 
2 0.0688 0.1978 
5 0.1736 0.3033 

1: (02) 6 0.0112 0.0648 
IO 0.3165 0.4419 
II 0.0106 0.0743 
I2 0.0060 0.0462 

0.4669 
0.6867 
0.5988 
0.7796 
0.7490 
0.672 I 

0.4367 
0.5812 
0.2578 
0.7156 
0.41 I4 
0.1843 

0.3699 
0.5014 
0.4425 
0.5785 
0.5548 
0.5010 
0.5180 
0.5868 
0.3736 
iI. 
0.41 I4 
0.3357 

Table 8-Continued. 

u(r). F, = (a:-o:);(oi-ai) 

b 1; m 3r!‘lF, 0.5 

(b) Isotropic scatterine 

8 

I 9 
2 
5 

LG(a,) 
6 

IO 
II 
I2 

I,(a,) ; 
8 

3 9 
? 

0.036- 
0.2685 
0.1766 
0.3791 
0.3335 
0.2398 
0.1607 
0.3507 
0.055 I 
0.5292 
0.1098 
0.0535 

0.1439- 0.37’8 
0.3593 0.5389 
0.2691 0.4605 
0.4574 0.6100 
0.4146 0.5766 
0.3278 0.5086 
0.2885 0.488 I 
0.452 I 0.6012 
0.1593 0.3612 
0.6052 0.7131 
0.2363 0.4181 
0.1432 0.3091 

0.0004 0.0208 0.2108 
0.0172 0.0494 0.2819 
0.0105 0.0369 0.2124 
0.0485 0.0856 0.3227 
0.0407 0.0748 0.3033 
0.0278 0.057 I 0.2694 
0.0860 0.2500 0.5736 
0.1853 0.3384 0.6258 
0.0365 0.1527 0.4766 
0.3214 0.4568 0.7006 
0.0305 0.1445 0.1846 
0.0334 0.1442 0.4521 

(c) Backward scattering 
I 0.0344 0.1306 
3 0.2633 0.3400 

/,((I,) 4 0.4279 0.1729 
7 0.3728 0.4367 
8 0.3278 0.3954 
9 0.2355 0.3122 
2 0.1642 0.2947 
5 0.3539 0.4577 

8 
9 
2 

0.0633 
0.5318 
0.1175 
0.0640 

0.0003 
0.0165 
0.010l 
0.0474 
0.0397 
0.0272 
0.0887 
0.1878 
0.0432 
0.3233 
0.0363 
0.0425 

0.1749 
0.6098 
0.2498 
0.1644 

0.0167 
0.0419 
0.03 I I 
0.0763 
0.0665 
0.0506 
0.2582 
0.3458 
0.1717 
0.4629 
0.1618 
0.1703 

I-3r4F, 

0.3133 
0.502 I 
0.2534 
0.571 I 
0.5393 
0.4772 
0.4964 
0.6086 
0.3805 
0.7192 
0.4649 
0.3355 

0.1812 
0.243 I 
0.2085 
0.2804 
0.2630 
0.2345 
0.5825 
0.6343 
0.4943 
0.7050 
0.5015 
0.4766 

chosen seven linear and four quadratic variations of 
a(r) having the average value of 0.5 over the region 
a, < r < a2 in the hollow and solid cylinders. The 
effects of forward, isotropic and backward scattering 
are also shown in Tables 6 and 7. 

In Tables 8 and 9, we present the results for the exit 
intensities I- at r = a, and I’ at r = u2 for the hollow 
cylinder and I+ at r = a2 for the solid cylinder, respec- 
tively, for the case of the unit isotropic incidence at 
r = u2. The scattering coefficients haking the average 
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Table 9. Exit distribution of radiation intensity I: at r = a2 
of a solid cylinder with a transparent boundary andf,@) = 1 

b 
- - 

a(x), = r/b 

m 3X/4 0.5 I -3x/4 

2 
5 
6 

10 
II 
12 

2 
5 
6 

IO 
II 
12 

2 
5 
6 

IO 
II 
I2 

2 
5 
6 

IO 
II 
12 

2 
5 
6 

10 
II 
I2 

2 
5 
6 

IO 
II 
12 

(a) Forward scattering 
0.4383 0.3524 
0.7001 0.6126 
0.3082 0.2949 
0.8352 0.7658 
0.5340 0.4619 
0.3310 0.358 I 

0.3083 0.1694 
0.3487 0.2106 
0. II92 0.0535 
0.4222 0.2835 
0.1173 0.0515 
0.0707 0.0276 

(b) Isotropic scattering 
0.4764 0.3847 
0.7046 0.6184 
0.3515 0.3272 
0.8241 0.7599 
0.5354 0.4639 
0.3636 0.3735 

0.3921 0.2254 
0.4232 0.2600 
0.2657 0.1462 
0.4762 0.3196 
0.2557 0.1370 
0.2339 0.1283 

(c) Backward scattering 
0.4782 0.3850 
0.7079 0.6202 
0.3587 0.3319 0.3202 
0.8274 0.76 19 0.7023 
0.5429 0.4693 
0.3736 0.3815 

0.4070 0.2350 
0.4374 0.2691 
0.2944 0.1673 
0.489 I 0.3276 
0.2839 0.1571 
0.2705 0. I560 

0.2807 
0.5350 
0.2977 
0.7036 
0.3996 
0.4000 

0.0790 
0.1199 
0.0206 
0.1885 
0.0204 
0.0093 

0.3044 
0.5400 
0.3182 
0.7014 
0.4012 
0.4007 

0.1075 
0.1448 
0.0677 
0.2068 
Q0634 
0.0595 

0.3037 
0.5407 

0.4043 
0.4060 

0.1123 
0.1493 
0.0798 
0.2106 
0.0748 
0.0760 

value of 0.5 are considered a(r) = 3r/4F,, 0.5 and 
I-3r/4F,, F, = (a: -a:)/(a:-a:), for the hollow 
cylinder and a(r) = 3x/4, 0.5 and 1-3.x/4, .r = r/b, 

for the solid cylinder. The directions m = I, 3,4, 7, 8 
and 9 representing P,,, < 0 and m = 2, 5,6, 10, I I and 
12 representing p,,, > 0 for the S, scheme are shown 
in Table 1. 

The ray effects mentioned in ref. [ 171 may affect the 
accuracy only in some special cases such as the line 
source in the medium and a collimated heat flux at 
the boundary. 

5. CONCLUSION 

The discrete-ordinate method has been used to 
solve the radiation problem with variable radiation 
properties in one-dimensional absorbing, emitting 
and anisotrooicallv scattering cvlindrical media. The 

17. 

18. 

. - - . 19. 

accuracy and efficiency for the Sd and S6 schemes are 
compared. The present results show that the spatial 
variation of radiation properties significantly affects 
the hemispherical reflectivity and transmissivity and 
the exit intensity. 
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RAYONNEMENT AVEC SYMETRIE CYLINDRIQUE, DIFFUSION ANISOTROPE ET 
PROPRIETES VARIABLES 

R&urn&On btudie les eBets sur le transfert radiatif des coefficients variables d’absorption et de diffusion 
pour des cylindres solides creux imettant et diffusant de facon anisotrope et ayant des front&es rifle- 
chissantes. Des methodes S, et S6 sont utilisees pour rtsoudre le probltme. Des r&hats sont present& 
sous forme de table pour le flux radiant net, la reflectivite et la transmittivitb htmispherique ainsi que 

I’exitance. 

STRAHLUNG IN SYMMETRISCHER ZYLINDERGEOMETRIE MIT ANISOTROPER 
STREUUNG UND VARIABLEN EIGENSCHAFTEN 

Zusammenfassung-Es werden die Einfliisse iirtlich variierender Absorptions- und Streuungskoeffizienten 
bei der Strahlung in absorbierenden, emittierenden, anisotrop streuenden, hohlen und massiven Zylindern 
mit reflektierenden Oberhiichen untersucht. Zur Liisung des Problems werden unterschiedliche Verfahren 
angewandt. Ergebnisse fur die folgenden Grdl3en werden tabellarisch dargestellt : einfallende Strahlung, 
Netto-StrahlungswiirmefluB, Reflexions- und Transmissionvermogen (auf eine Halbkugel bezogen) und 

Ausgangsintensitat. 

OCECHMMETPWfHOE M3JWlEHHE TIP&i AHH3OTPOITHOM PACCElIHMH M 
TIEPEMEHHbIX CBOftCTBAX 

AsmoTu5m-HceJreAyerc~ aJlHeHEC nCpi%.4Ctml.U IlO npocrPaHCrSy XO~I#I@~IU~CHTOB IIOI-JlOKlCHll# A paC- 

cemmx ira paxssamsorsrmrii ueperroc a nornoruaroutnx R ucnycxasoumx awoqon~o paaxnsamumx 
nonbix E c~ouwba VCOV~~~ &IA pcuIeliEn 3aJwxa scnoJlb3yloTcn 
rbwro~~bl ~ulcrpe~lrw opnaaar S, n S,. npaeonarcn Ta6ynrrposrumsrc pcaynxraw JIJM nazwxuero 
iiwe~aa, cyMMapHor0 Temonoro noToKa Hulysctmn. nonyc@ePwcclw xo*HtmeirroB 0Tpaxelora 

B QMXIyCKaHWl. a TllloLC BldXOAHOii HHTCRCRBIIOCM. 


